Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Brain Behav Immun ; 87: 18-22, 2020 07.
Article in English | MEDLINE | ID: covidwho-1719333

ABSTRACT

Viral infections have detrimental impacts on neurological functions, and even to cause severe neurological damage. Very recently, coronaviruses (CoV), especially severe acute respiratory syndrome CoV 2 (SARS-CoV-2), exhibit neurotropic properties and may also cause neurological diseases. It is reported that CoV can be found in the brain or cerebrospinal fluid. The pathobiology of these neuroinvasive viruses is still incompletely known, and it is therefore important to explore the impact of CoV infections on the nervous system. Here, we review the research into neurological complications in CoV infections and the possible mechanisms of damage to the nervous system.


Subject(s)
Coronavirus Infections/physiopathology , Nervous System Diseases/physiopathology , Pneumonia, Viral/physiopathology , Betacoronavirus , COVID-19 , Consciousness Disorders/etiology , Consciousness Disorders/physiopathology , Coronavirus 229E, Human , Coronavirus Infections/complications , Coronavirus NL63, Human , Coronavirus OC43, Human , Dysgeusia/etiology , Dysgeusia/physiopathology , Encephalitis/etiology , Encephalitis/physiopathology , Encephalitis, Viral/etiology , Encephalitis, Viral/physiopathology , Guillain-Barre Syndrome/etiology , Guillain-Barre Syndrome/physiopathology , Humans , Middle East Respiratory Syndrome Coronavirus , Nervous System Diseases/etiology , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/physiopathology , Neurotoxicity Syndromes/virology , Olfaction Disorders/etiology , Olfaction Disorders/physiopathology , Pandemics , Pneumonia, Viral/complications , Polyneuropathies/etiology , Polyneuropathies/physiopathology , Severe acute respiratory syndrome-related coronavirus , SARS-CoV-2 , Seizures/etiology , Seizures/physiopathology , Severe Acute Respiratory Syndrome/complications , Severe Acute Respiratory Syndrome/physiopathology , Stroke/etiology , Stroke/physiopathology
2.
Nat Med ; 28(1): 20-23, 2022 01.
Article in English | MEDLINE | ID: covidwho-1636011
3.
PLoS One ; 16(12): e0260743, 2021.
Article in English | MEDLINE | ID: covidwho-1559789

ABSTRACT

BACKGROUND: Outpatient rehabilitation was temporarily suspended because of coronavirus disease (COVID-19), and there was a risk that patients' activities of daily living (ADLs) would decrease and physical functions unmaintained. Therefore, we investigated the ADLs and motor functions of chronic stroke patients whose outpatient rehabilitation was temporarily interrupted. METHODS: In this observational study, the Fugl-Meyer Assessment of the Upper Extremity (FMA-UE), Action Research Arm Test (ARAT), and Barthel Index (BI) scores of 49 stroke hemiplegic patients at 6 and 3 months before rehabilitation interruptions were retrospectively determined and were prospectively investigated on resumption of outpatient rehabilitation. Presence or absence of symptoms and difficulties caused by the interruption period (IP) was investigated using a binomial method. Deltas were analyzed using a generalized linear model (GLM) according to the survey period. Age, sex, severity of FMA-UE immediately post-resumption and post-onset period were used as covariates. For survey items showing significant model fit, the 95% confidence interval of minimum detectable change (MDC95) was calculated, and the amount of change was compared. Questionnaire responses were tested via proportion ratio. Statistical significance was set at 5%. RESULTS: The FMA-UE part A and total scores were significantly model fit depending on periods. The estimated FMA-UE total score decreased by 1.64 (z = -2.38, p = 0.02) during the 3-month IP. No fits were observed by GLM in other parts of the FMA-UE, ARAT, or BI. The calculated MDC95 was 3.58 for FMA-UE part A and 4.50 for FMA-UE overall. Answers to questions regarding sleep disturbance and physical pain were significantly biased toward "no" in the psychosomatic function items (p<0.05). There was no bias in the distribution of answers to questions regarding joint stiffness, muscle weakness, muscle stiffness, and difficulty in moving arms and hands. All 16 questions regarding activities and participation items were significantly biased toward answers "no" (p<0.05). CONCLUSIONS: The FMA-UE part A and total scores were affected. Patients complained of subjective symptoms related to upper limb paralysis after the IP. Since ADLs of patients were maintained, the therapist can recommend that patients not receiving outpatient treatments be evaluated in relation to the shoulder, elbow, and forearm and instructed on self-training to maintain motor function.


Subject(s)
COVID-19/epidemiology , Outpatients/psychology , Stroke/physiopathology , Upper Extremity/physiopathology , Adult , COVID-19/virology , Chronic Disease , Female , Humans , Interrupted Time Series Analysis , Male , Middle Aged , Muscle Strength , Muscle Weakness/physiopathology , Observational Studies as Topic , SARS-CoV-2/isolation & purification , Stroke Rehabilitation , Surveys and Questionnaires
4.
Neurorehabil Neural Repair ; 36(1): 3-16, 2022 01.
Article in English | MEDLINE | ID: covidwho-1488373

ABSTRACT

Background. The COVID-19 pandemic attributable to the severe acute respiratory syndrome virus (SARS-CoV-2) has had a significant and continuing impact across all areas of healthcare including stroke. Individuals post-stroke are at high risk for infection, disease severity, and mortality after COVID-19 infection. Exercise stroke rehabilitation programs remain critical for individuals recovering from stroke to mitigate risk factors and morbidity associated with the potential long-term consequences of COVID-19. There is currently no exercise rehabilitation guidance for people post-stroke with a history of COVID-19 infection. Purpose. To (1) review the multi-system pathophysiology of COVID-19 related to stroke and exercise; (2) discuss the multi-system benefits of exercise for individuals post-stroke with suspected or confirmed COVID-19 infection; and (3) provide clinical considerations related to COVID-19 for exercise during stroke rehabilitation. This article is intended for healthcare professionals involved in the implementation of exercise rehabilitation for individuals post-stroke who have suspected or confirmed COVID-19 infection and non-infected individuals who want to receive safe exercise rehabilitation. Results. Our clinical considerations integrate pre-COVID-19 stroke (n = 2) and COVID-19 exercise guidelines for non-stroke populations (athletic [n = 6], pulmonary [n = 1], cardiac [n = 2]), COVID-19 pathophysiology literature, considerations of stroke rehabilitation practices, and exercise physiology principles. A clinical decision-making tool for COVID-19 screening and eligibility for stroke exercise rehabilitation is provided, along with key subjective and physiological measures to guide exercise prescription. Conclusion. We propose that this framework promotes safe exercise programming within stroke rehabilitation for COVID-19 and future infectious disease outbreaks.


Subject(s)
COVID-19/rehabilitation , Exercise Therapy/methods , Stroke Rehabilitation/methods , Stroke/therapy , COVID-19/complications , COVID-19/physiopathology , Clinical Decision-Making , Delivery of Health Care , Humans , SARS-CoV-2 , Stroke/complications , Stroke/physiopathology
5.
Stroke ; 53(2): 578-585, 2022 02.
Article in English | MEDLINE | ID: covidwho-1450645

ABSTRACT

BACKGROUND AND PURPOSE: The ARAT (Action Research Arm Test) has been used to classify upper limb motor outcome after stroke in 1 of 3, 4, or 5 categories. The COVID-19 pandemic has encouraged the development of assessments that can be performed quickly and remotely. The aim of this study was to derive and internally validate decision trees for categorizing upper limb motor outcomes at the late subacute and chronic stages of stroke using a subset of ARAT tasks. METHODS: This study retrospectively analyzed ARAT scores obtained in-person at 3 months poststroke from 333 patients. In-person ARAT scores were used to categorize patients' 3-month upper limb outcome using classification systems with 3, 4, and 5 outcome categories. Individual task scores from in-person assessments were then used in classification and regression tree analyses to determine subsets of tasks that could accurately categorize upper limb outcome for each of the 3 classification systems. The decision trees developed using 3-month ARAT data were also applied to in-person ARAT data obtained from 157 patients at 6 months poststroke. RESULTS: The classification and regression tree analyses produced decision trees requiring 2 to 4 ARAT tasks. The overall accuracy of the cross-validated decision trees ranged from 87.7% (SE, 1.0%) to 96.7% (SE, 2.0%). Accuracy was highest when classifying patients into one of 3 outcome categories and lowest for 5 categories. The decision trees are referred to as FOCUS (Fast Outcome Categorization of the Upper Limb After Stroke) assessments and they remained accurate for 6-month poststroke ARAT scores (overall accuracy range 83.4%-91.7%). CONCLUSIONS: A subset of ARAT tasks can accurately categorize upper limb motor outcomes after stroke. Future studies could investigate the feasibility and accuracy of categorizing outcomes using the FOCUS assessments remotely via video call.


Subject(s)
Stroke Rehabilitation , Stroke/physiopathology , Upper Extremity/physiopathology , Activities of Daily Living , Adolescent , Adult , Aged , Aged, 80 and over , Arm/physiopathology , COVID-19/complications , Decision Trees , Female , Hemiplegia/etiology , Hemiplegia/rehabilitation , Humans , Male , Middle Aged , New Zealand , Pandemics , Recovery of Function , Reproducibility of Results , Retrospective Studies , Stroke/etiology , Treatment Outcome , Young Adult
6.
Am J Cardiol ; 160: 106-111, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1450050

ABSTRACT

The occurrence of venous thromboembolisms in patients with COVID-19 has been established. We sought to evaluate the clinical impact of thrombosis in patients with COVID-19 over the span of the pandemic to date. We analyzed patients with COVID-19 with a diagnosis of thrombosis who presented to the MedStar Health system (11 hospitals in Washington, District of Columbia, and Maryland) during the pandemic (March 1, 2020, to March 31, 2021). We compared the clinical course and outcomes based on the presence or absence of thrombosis and then, specifically, the presence of cardiac thrombosis. The cohort included 11,537 patients who were admitted for COVID-19. Of these patients, 1,248 had noncardiac thrombotic events and 1,009 had cardiac thrombosis (myocardial infarction) during their hospital admission. Of the noncardiac thrombotic events, 562 (45.0%) were pulmonary embolisms, 480 (38.5%) were deep venous thromboembolisms, and 347 (27.8%) were strokes. In the thrombosis arm, the mean age of the cohort was 64.5 ± 15.3 years, 53.3% were men, and the majority were African-American (64.9%). Patients with thrombosis tended to be older with more co-morbidities. The in-hospital mortality rate was significantly higher (16.0%) in patients with COVID-19 with concomitant non-cardiac thrombosis than in those without thrombosis (7.9%, p <0.001) but lower than in patients with COVID-19 with cardiac thrombosis (24.7%, p <0.001). In conclusion, patients with COVID-19 with thrombosis, especially cardiac thrombosis, are at higher risk for in-hospital mortality. However, this prognosis is not as grim as for patients with COVID-19 and cardiac thrombosis. Efforts should be focused on early recognition, evaluation, and intensifying antithrombotic management for these patients.


Subject(s)
COVID-19/physiopathology , Coronary Thrombosis/physiopathology , Hospital Mortality , Myocardial Infarction/physiopathology , Pulmonary Embolism/physiopathology , Stroke/physiopathology , Venous Thrombosis/physiopathology , Aged , Aged, 80 and over , COVID-19/complications , Coronary Thrombosis/complications , Female , Humans , Male , Middle Aged , Myocardial Infarction/complications , Pulmonary Embolism/complications , SARS-CoV-2 , Stroke/complications , Venous Thrombosis/complications
7.
J Stroke Cerebrovasc Dis ; 30(9): 105991, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1320171

ABSTRACT

OBJECTIVES: Computer game assisted task specific exercises (CGATSE) are rehabilitation gaming systems (RGS) used in stroke rehabilitation to facilitate patient performance of high intensity, task based, repetitive exercises aiming to enhance neuroplasticity. CGATSE maybe an appealing option in home based rehabilitation of stroke patients, especially during the COVID-19 pandemic. This study aimed to determine the effects of CGATSE on hemiplegic arm-hand function, cognitive function and quality of life in stroke. MATERIALS AND METHODS: Thirty stroke patients were randomized into two groups. All participants received twenty sessions of physical therapy. In addition, the therapy group undertook thirty minutes of CGATSE using the Rejoyce gaming system; while the control group undertook thirty minutes of occupational therapy (OT). Motor function was evaluated before and after treatment using the Fugl Meyer upper extremity (FMUE), Brunnstrom stages of stroke recovery (BSSR) arm and hand. The CGATSE group also completed the Rejoyce arm hand function test (RAHFT). Cognitive function was evaluated using the mini mental state examination, Montreal Cognitive Assessment (MoCA) and Stroke Specific Quality of Life (SS-QOL) scale. RESULTS: The FMUE, BSSR arm and SSQOL improved in both groups (p < 0.05). BSSR of the hand improved only in the CGATSE group (p = 0.024). RAHFT scores improved in the CGATSE group (p = 0.008). MoCA scores significantly improved in the control group (p = 0.008). CONCLUSIONS: CGATSE may be beneficial in providing continuation of care after stroke, especially during the Covid-19 pandemic when home based rehabilitation options are becoming increasingly important. Benefits of CGATSE in improving cognitive function is less clear. RGS aimed at improving motor function may be compared to gaming systems designed to target cognitive development and more detailed higher cortical function deficit tests can be used as outcome measures.


Subject(s)
Cognition , Exercise Therapy , Motor Activity , Quality of Life , Stroke Rehabilitation , Stroke/therapy , Telerehabilitation , Upper Extremity/innervation , Video Games , Aged , Disability Evaluation , Female , Functional Status , Humans , Male , Middle Aged , Recovery of Function , Stroke/diagnosis , Stroke/physiopathology , Stroke/psychology , Time Factors , Treatment Outcome , Turkey
8.
Med Sci Monit ; 27: e932962, 2021 Jun 19.
Article in English | MEDLINE | ID: covidwho-1278722

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative pathogen of the recent pandemic of coronavirus disease 19 (COVID-19). As the infection spreads, there is increasing evidence of neurological and psychiatric involvement in COVID-19. Headache, impaired consciousness, and olfactory and gustatory dysfunctions are common neurological manifestations described in the literature. Studies demonstrating more specific and more severe neurological involvement such as cerebrovascular insults, encephalitis and Guillain-Barre syndrome are also emerging. Respiratory failure, a significant condition that leads to mortality in COVID-19, is hypothesized to be partly due to brainstem impairment. Notably, some of these neurological complications seem to persist long after infection. This review aims to provide an update on what is currently known about neurological involvement in patients with COVID-19 due to SARS-CoV-2 infection. In this review, we demonstrate invasion routes of SARS-CoV-2, provide evidence to support the neurotropism hypothesis of the virus, and investigate the pathological mechanisms that underlie neurological complications associated with SARS-CoV-2.


Subject(s)
COVID-19/physiopathology , Nervous System Diseases/virology , Ageusia/virology , Anosmia/virology , COVID-19/complications , COVID-19/epidemiology , COVID-19/metabolism , COVID-19/virology , Encephalitis/virology , Headache/physiopathology , Headache/virology , Humans , Nervous System Diseases/epidemiology , Nervous System Diseases/etiology , Neuroimmunomodulation/physiology , Pandemics , SARS-CoV-2/isolation & purification , Stroke/physiopathology , Stroke/virology , Post-Acute COVID-19 Syndrome
9.
J Stroke Cerebrovasc Dis ; 30(8): 105857, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1213403

ABSTRACT

OBJECTIVE: To characterize differences in disposition arrangement among rehab-eligible stroke patients at a Comprehensive Stroke Center before and during the COVID-19 pandemic. MATERIALS AND METHODS: We retrospectively analyzed a prospective registry for demographics, hospital course, and discharge dispositions of rehab-eligible acute stroke survivors admitted 6 months prior to (10/2019-03/2020) and during (04/2020-09/2020) the COVID-19 pandemic. The primary outcome was discharge to an inpatient rehabilitation facility (IRF) as opposed to other facilities using descriptive statistics, and IRF versus home using unadjusted and adjusted backward stepwise logistic regression. RESULTS: Of the 507 rehab-eligible stroke survivors, there was no difference in age, premorbid disability, or stroke severity between study periods (p>0.05). There was a 9% absolute decrease in discharges to an IRF during the pandemic (32.1% vs. 41.1%, p=0.04), which translated to 38% lower odds of being discharged to IRF versus home in unadjusted regression (OR 0.62, 95%CI 0.42-0.92, p=0.016). The lower odds of discharge to IRF persisted in the multivariable model (aOR 0.16, 95%CI 0.09-0.31, p<0.001) despite a significant increase in discharge disability (median discharge mRS 4 [IQR 2-4] vs. 2 [IQR 1-3], p<0.001) during the pandemic. CONCLUSIONS: Admission for stroke during the COVID-19 pandemic was associated with a significantly lower probability of being discharged to an IRF. This effect persisted despite adjustment for predictors of IRF disposition, including functional disability at discharge. Potential reasons for this disparity are explored.


Subject(s)
COVID-19 , Patient Discharge/trends , Patient Transfer/trends , Practice Patterns, Physicians'/trends , Stroke Rehabilitation/trends , Stroke/therapy , Aged , Disability Evaluation , Female , Humans , Male , Middle Aged , New Jersey , Recovery of Function , Registries , Retrospective Studies , Stroke/diagnosis , Stroke/physiopathology , Time Factors
10.
JMIR Mhealth Uhealth ; 8(7): e17216, 2020 07 09.
Article in English | MEDLINE | ID: covidwho-1177909

ABSTRACT

BACKGROUND: Recent advancements in wearable sensor technology have shown the feasibility of remote physical therapy at home. In particular, the current COVID-19 pandemic has revealed the need and opportunity of internet-based wearable technology in future health care systems. Previous research has shown the feasibility of human activity recognition technologies for monitoring rehabilitation activities in home environments; however, few comprehensive studies ranging from development to clinical evaluation exist. OBJECTIVE: This study aimed to (1) develop a home-based rehabilitation (HBR) system that can recognize and record the type and frequency of rehabilitation exercises conducted by the user using a smartwatch and smartphone app equipped with a machine learning (ML) algorithm and (2) evaluate the efficacy of the home-based rehabilitation system through a prospective comparative study with chronic stroke survivors. METHODS: The HBR system involves an off-the-shelf smartwatch, a smartphone, and custom-developed apps. A convolutional neural network was used to train the ML algorithm for detecting home exercises. To determine the most accurate way for detecting the type of home exercise, we compared accuracy results with the data sets of personal or total data and accelerometer, gyroscope, or accelerometer combined with gyroscope data. From March 2018 to February 2019, we conducted a clinical study with two groups of stroke survivors. In total, 17 and 6 participants were enrolled for statistical analysis in the HBR group and control group, respectively. To measure clinical outcomes, we performed the Wolf Motor Function Test (WMFT), Fugl-Meyer Assessment of Upper Extremity, grip power test, Beck Depression Inventory, and range of motion (ROM) assessment of the shoulder joint at 0, 6, and 12 months, and at a follow-up assessment 6 weeks after retrieving the HBR system. RESULTS: The ML model created with personal data involving accelerometer combined with gyroscope data (5590/5601, 99.80%) was the most accurate compared with accelerometer (5496/5601, 98.13%) or gyroscope data (5381/5601, 96.07%). In the comparative study, the drop-out rates in the control and HBR groups were 40% (4/10) and 22% (5/22) at 12 weeks and 100% (10/10) and 45% (10/22) at 18 weeks, respectively. The HBR group (n=17) showed a significant improvement in the mean WMFT score (P=.02) and ROM of flexion (P=.004) and internal rotation (P=.001). The control group (n=6) showed a significant change only in shoulder internal rotation (P=.03). CONCLUSIONS: This study found that a home care system using a commercial smartwatch and ML model can facilitate participation in home training and improve the functional score of the WMFT and shoulder ROM of flexion and internal rotation in the treatment of patients with chronic stroke. This strategy can possibly be a cost-effective tool for the home care treatment of stroke survivors in the future. TRIAL REGISTRATION: Clinical Research Information Service KCT0004818; https://tinyurl.com/y92w978t.


Subject(s)
Home Care Services , Internet , Stroke Rehabilitation/methods , Stroke/physiopathology , Telerehabilitation , Upper Extremity/physiopathology , Wearable Electronic Devices , Aged , Chronic Disease , Exercise Therapy/statistics & numerical data , Humans , Machine Learning , Middle Aged , Mobile Applications , Models, Theoretical , Prospective Studies , Survivors , Treatment Outcome
11.
Cardiol Rev ; 29(3): 143-149, 2021.
Article in English | MEDLINE | ID: covidwho-1148006

ABSTRACT

The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus-2 has affected the health of people across the globe. Cardiovascular diseases (CVDs) have a significant relationship with COVID-19, both as a risk factor and prognostic indicator, and as a complication of the disease itself. In addition to predisposing to CVD complications, the ongoing pandemic has severely affected the delivery of timely and appropriate care for cardiovascular conditions resulting in increased mortality. The etiology behind the cardiac injury associated with severe acute respiratory syndrome coronavirus-2 is likely varied, including coronary artery disease, microvascular thrombosis, myocarditis, and stress cardiomyopathy. Further large-scale investigations are needed to better determine the underlying mechanism of myocardial infarction and other cardiac injury in COVID-19 patients and to determine the incidence of each type of cardiac injury in this patient population. Telemedicine and remote monitoring technologies can play an important role in optimizing outcomes in patients with established CVD. In this article, we summarize the various impacts that COVID-19 has on the cardiovascular system, including myocardial infarction, myocarditis, stress cardiomyopathy, thrombosis, and stroke.


Subject(s)
COVID-19/physiopathology , Cardiovascular Diseases/physiopathology , COVID-19/complications , COVID-19/epidemiology , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Comorbidity , Coronary Artery Disease/epidemiology , Coronary Artery Disease/etiology , Coronary Artery Disease/physiopathology , Coronary Thrombosis/etiology , Coronary Thrombosis/physiopathology , Heart Disease Risk Factors , Humans , Ischemic Stroke/epidemiology , Ischemic Stroke/etiology , Ischemic Stroke/physiopathology , Microvessels , Myocardial Infarction/epidemiology , Myocardial Infarction/etiology , Myocardial Infarction/physiopathology , Myocarditis/etiology , Myocarditis/physiopathology , SARS-CoV-2 , Stroke/epidemiology , Stroke/etiology , Stroke/physiopathology , Takotsubo Cardiomyopathy/etiology , Takotsubo Cardiomyopathy/physiopathology , Thrombosis/etiology , Thrombosis/physiopathology
12.
J Thromb Thrombolysis ; 52(3): 889-897, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1103504

ABSTRACT

Sickle cell disease (SCD) is an inherited monogenic hemoglobinopathy characterized by formation of sickle erythrocytes under conditions of deoxygenation. Sickle erythrocytes can lead to thrombus formation and vaso-occlusive episodes that may result in hemolytic anemia, pain crisis and multiple organ damage. Moreover, SCD is characterized by endothelial damage, increased inflammatory response, platelet activation and aggravation, and activation of both the intrinsic and the extrinsic coagulation pathways. Cerebrovascular events constitute an important clinical complication of SCD. Children with SCD have a 300-fold higher risk of acute stroke and by the age of 45 about 25% of patients have suffered an overt stoke. Management and prevention of stroke in patients with SCD is not well defined. Moreover, the presence of patent foramen ovale (PFO) increases the risk of the occurrence of an embolic cerebrovascular event. The role of PFO closure and antiplatelet or anticoagulation therapy has not been well investigated. Moreover, during COVID-19 pandemic and taking into account the increased rates of thrombotic events and the difficulties in blood transfusion, management of SCD patients is even more challenging and difficult, since data are scarce regarding stroke occurrence and management in this specific population in the COVID-19 era. This review focuses on pathophysiology of stroke in patients with SCD and possible treatment strategies in the presence of PFO.


Subject(s)
Anemia, Sickle Cell/complications , Foramen Ovale, Patent/complications , Stroke/etiology , Anemia, Sickle Cell/diagnosis , Anemia, Sickle Cell/physiopathology , Anemia, Sickle Cell/therapy , COVID-19/complications , Foramen Ovale, Patent/diagnosis , Foramen Ovale, Patent/physiopathology , Foramen Ovale, Patent/therapy , Humans , Primary Prevention , Prognosis , Recurrence , Risk Assessment , Risk Factors , Secondary Prevention , Stroke/diagnosis , Stroke/physiopathology , Stroke/prevention & control
13.
Neuroepidemiology ; 55(2): 109-118, 2021.
Article in English | MEDLINE | ID: covidwho-1102234

ABSTRACT

BACKGROUND: COVID-19 can be accompanied by acute neurological complications of both central and peripheral nervous systems (CNS and PNS). In this study, we estimate the frequency of such complications among hospital inpatients with COVID-19 in Assiut and Aswan university hospitals. MATERIALS AND METHODS: We screened all patients with suspected COVID-19 admitted from 1 June to 10 August 2020 to the university hospitals of Assiut and Aswan in Upper Egypt. Clinical and laboratory tests, CT/MRI of the chest and brain, and neurophysiology study were performed for each patient if indicated. RESULTS: 439 patients had confirmed/probable COVID-19; neurological manifestations occurred in 222. Of these, 117 had acute neurological disease and the remainder had nonspecific neuropsychiatric symptoms such as headache, vertigo, and depression. The CNS was affected in 75 patients: 55 had stroke and the others had convulsions (5), encephalitis (6), hypoxic encephalopathy (4), cord myelopathy (2), relapse of multiple sclerosis (2), and meningoencephalitis (1). The PNS was affected in 42 patients: the majority had anosmia and ageusia (31) and the others had Guillain-Barré syndrome (4), peripheral neuropathy (3), myasthenia gravis (MG, 2), or myositis (2). Fever, respiratory symptoms, and headache were the most common general symptoms. Hypertension, diabetes mellitus, and ischemic heart disease were the most common comorbidities in patients with CNS affection. CONCLUSION: In COVID-19, both the CNS and PNS are affected. Stroke was the most common complication for CNS, and anosmia and/or ageusia were common for PNS diseases. However, there were 6 cases of encephalitis, 2 cases of spinal cord myelopathy, 2 cases of MG, and 2 cases of myositis.


Subject(s)
Anosmia/physiopathology , COVID-19/physiopathology , Central Nervous System Diseases/physiopathology , Peripheral Nervous System Diseases/physiopathology , Stroke/physiopathology , Adult , Aged , Anosmia/epidemiology , Brain/diagnostic imaging , COVID-19/diagnosis , COVID-19/epidemiology , Central Nervous System Diseases/diagnosis , Central Nervous System Diseases/epidemiology , Disease Progression , Egypt/epidemiology , Encephalitis/epidemiology , Encephalitis/physiopathology , Female , Guillain-Barre Syndrome/epidemiology , Guillain-Barre Syndrome/physiopathology , Hospitals, University , Humans , Hypoxia, Brain/epidemiology , Hypoxia, Brain/physiopathology , Lung/diagnostic imaging , Magnetic Resonance Imaging , Male , Middle Aged , Multiple Sclerosis, Relapsing-Remitting/epidemiology , Multiple Sclerosis, Relapsing-Remitting/physiopathology , Myasthenia Gravis/epidemiology , Myasthenia Gravis/physiopathology , Myositis/epidemiology , Myositis/physiopathology , Peripheral Nervous System Diseases/diagnosis , Peripheral Nervous System Diseases/epidemiology , SARS-CoV-2 , Seizures/epidemiology , Seizures/physiopathology , Spinal Cord/diagnostic imaging , Spinal Cord Diseases/epidemiology , Spinal Cord Diseases/physiopathology , Stroke/diagnosis , Stroke/epidemiology , Tomography, X-Ray Computed
14.
IEEE Pulse ; 12(1): 2-6, 2021.
Article in English | MEDLINE | ID: covidwho-1091099

ABSTRACT

In March 2020 -still the early days of the U.K.'s COVID-19 crisis-Rhys Thomas, a neurologist at Newcastle University, got a call at home from a concerned colleague. The colleague's cousin was hospitalized, critically ill with COVID-19, and had developed brainstem encephalitis, a severe inflammatory condition of the brain causing a suite of symptoms, from eye problems to balance problems and drowsiness. He wanted to know if Thomas knew anything about these conditions. At the time, the research coming out of Wuhan, China, only suggested a mild whiff of neurological symptoms-headache, dizziness, and the loss of taste and smell. Clearly the virus could affect the brain in some ways, but it wasn't, Thomas thought then, anything serious. But this report sounded much more concerning. Symptoms like this patient's would mean the virus was accessing more of the nervous system than scientists originally thought.


Subject(s)
Brain Diseases/etiology , COVID-19/complications , Pandemics , SARS-CoV-2 , Brain Diseases/physiopathology , Brain Diseases/psychology , COVID-19/physiopathology , COVID-19/psychology , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/physiopathology , Encephalitis/etiology , Encephalitis/physiopathology , Humans , Nervous System Diseases/etiology , Nervous System Diseases/physiopathology , Nervous System Diseases/psychology , SARS-CoV-2/pathogenicity , Stroke/etiology , Stroke/physiopathology , COVID-19 Drug Treatment
15.
Rev Neurosci ; 32(6): 671-691, 2021 08 26.
Article in English | MEDLINE | ID: covidwho-1082035

ABSTRACT

The sudden and storming onset of coronavirus 2 infection (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) was associated by severe acute respiratory syndrome. Recently, corona virus disease 19 (COVID-19) has appeared as a pandemic throughout the world. The mutational nature of the virus, along with the different means of entering and spreading throughout the body has involved different organs. Thus, patients are faced with a wide range of symptoms and signs. Neurological symptoms, such as anosmia, agnosia, stroke, paralysis, cranial nerve deficits, encephalopathy, meningitis, delirium and seizures, are reported as common complications affecting the course of the disease and its treatment. In this review, special attention was paid to reports that addressed the acute or chronic neurological manifestations in COVID-19 patients who may present acute respiratory syndrome or not. Moreover, we discussed the central (CNS) and peripheral nervous system (PNS) complications in SARS-Cov2-infected patients, and also the pathophysiology of neurological abnormalities in COVID-19.


Subject(s)
Brain/virology , COVID-19/complications , Nervous System Diseases/complications , SARS-CoV-2/pathogenicity , Stroke/complications , Brain/physiopathology , Humans , RNA, Viral , Seizures/complications , Seizures/etiology , Stroke/physiopathology
16.
Brain Behav Immun ; 91: 649-667, 2021 01.
Article in English | MEDLINE | ID: covidwho-1064858

ABSTRACT

For the last two decades, researchers have placed hopes in a new era in which a combination of reperfusion and neuroprotection would revolutionize the treatment of stroke. Nevertheless, despite the thousands of papers available in the literature showing positive results in preclinical stroke models, randomized clinical trials have failed to show efficacy. It seems clear now that the existing data obtained in preclinical research have depicted an incomplete picture of stroke pathophysiology. In order to ameliorate bench-to-bed translation, in this review we first describe the main actors on stroke inflammatory and immune responses based on the available preclinical data, highlighting the fact that the link between leukocyte infiltration, lesion volume and neurological outcome remains unclear. We then describe what is known on neuroinflammation and immune responses in stroke patients, and summarize the results of the clinical trials on immunomodulatory drugs. In order to understand the gap between clinical trials and preclinical results on stroke, we discuss in detail the experimental results that served as the basis for the summarized clinical trials on immunomodulatory drugs, focusing on (i) experimental stroke models, (ii) the timing and selection of outcome measuring, (iii) alternative entry routes for leukocytes into the ischemic region, and (iv) factors affecting stroke outcome such as gender differences, ageing, comorbidities like hypertension and diabetes, obesity, tobacco, alcohol consumption and previous infections like Covid-19. We can do better for stroke treatment, especially when targeting inflammation following stroke. We need to re-think the design of stroke experimental setups, notably by (i) using clinically relevant models of stroke, (ii) including both radiological and neurological outcomes, (iii) performing long-term follow-up studies, (iv) conducting large-scale preclinical stroke trials, and (v) including stroke comorbidities in preclinical research.


Subject(s)
Stroke Rehabilitation/methods , Stroke/immunology , Stroke/physiopathology , Animals , Brain Ischemia/drug therapy , Comorbidity , Disease Models, Animal , Humans , Immunity/immunology , Immunity/physiology , Inflammation/immunology , Neuroprotection/immunology , Neuroprotection/physiology , Outcome Assessment, Health Care , Reperfusion/methods , Reperfusion/trends
17.
Neurology ; 95(24): e3373-e3385, 2020 12 15.
Article in English | MEDLINE | ID: covidwho-1050484

ABSTRACT

OBJECTIVES: To investigate the hypothesis that strokes occurring in patients with coronavirus disease 2019 (COVID-19) have distinctive features, we investigated stroke risk, clinical phenotypes, and outcomes in this population. METHODS: We performed a systematic search resulting in 10 studies reporting stroke frequency among patients with COVID-19, which were pooled with 1 unpublished series from Canada. We applied random-effects meta-analyses to estimate the proportion of stroke among COVID-19. We performed an additional systematic search for cases series of stroke in patients with COVID-19 (n = 125), and we pooled these data with 35 unpublished cases from Canada, the United States, and Iran. We analyzed clinical characteristics and in-hospital mortality stratified into age groups (<50, 50-70, >70 years). We applied cluster analyses to identify specific clinical phenotypes and their relationship with death. RESULTS: The proportions of patients with COVID-19 with stroke (1.8%, 95% confidence interval [CI] 0.9%-3.7%) and in-hospital mortality (34.4%, 95% CI 27.2%-42.4%) were exceedingly high. Mortality was 67% lower in patients <50 years of age relative to those >70 years of age (odds ratio [OR] 0.33, 95% CI 0.12-0.94, p = 0.039). Large vessel occlusion was twice as frequent (46.9%) as previously reported and was high across all age groups, even in the absence of risk factors or comorbid conditions. A clinical phenotype characterized by older age, a higher burden of comorbid conditions, and severe COVID-19 respiratory symptoms was associated with the highest in-hospital mortality (58.6%) and a 3 times higher risk of death than the rest of the cohort (OR 3.52, 95% CI 1.53-8.09, p = 0.003). CONCLUSIONS: Stroke is relatively frequent among patients with COVID-19 and has devastating consequences across all ages. The interplay of older age, comorbid conditions, and severity of COVID-19 respiratory symptoms is associated with an extremely elevated mortality.


Subject(s)
COVID-19/mortality , COVID-19/physiopathology , Hospital Mortality/trends , Phenotype , Stroke/mortality , Stroke/physiopathology , Humans , Mortality/trends , Risk Factors
18.
J Alzheimers Dis ; 79(3): 931-948, 2021.
Article in English | MEDLINE | ID: covidwho-1033235

ABSTRACT

Proinflammatory cytokines such as tumor necrosis factor (TNF), with its now appreciated key roles in neurophysiology as well as neuropathophysiology, are sufficiently well-documented to be useful tools for enquiry into the natural history of neurodegenerative diseases. We review the broader literature on TNF to rationalize why abruptly-acquired neurodegenerative states do not exhibit the remorseless clinical progression seen in those states with gradual onsets. We propose that the three typically non-worsening neurodegenerative syndromes, post-stroke, post-traumatic brain injury (TBI), and post cardiac arrest, usually become and remain static because of excess cerebral TNF induced by the initial dramatic peak keeping microglia chronically activated through an autocrine loop of microglial activation through excess cerebral TNF. The existence of this autocrine loop rationalizes post-damage repair with perispinal etanercept and proposes a treatment for cerebral aspects of COVID-19 chronicity. Another insufficiently considered aspect of cerebral proinflammatory cytokines is the fitness of the endogenous cerebral anti-TNF system provided by norepinephrine (NE), generated and distributed throughout the brain from the locus coeruleus (LC). We propose that an intact LC, and therefore an intact NE-mediated endogenous anti-cerebral TNF system, plus the DAMP (damage or danger-associated molecular pattern) input having diminished, is what allows post-stroke, post-TBI, and post cardiac arrest patients a strong long-term survival advantage over Alzheimer's disease and Parkinson's disease sufferers. In contrast, Alzheimer's disease and Parkinson's disease patients remorselessly worsen, being handicapped by sustained, accumulating, DAMP and PAMP (pathogen-associated molecular patterns) input, as well as loss of the LC-origin, NE-mediated, endogenous anti-cerebral TNF system. Adrenergic receptor agonists may counter this.


Subject(s)
Brain Injuries/physiopathology , Neurodegenerative Diseases/physiopathology , Stroke/physiopathology , Tumor Necrosis Factor-alpha/physiology , Alzheimer Disease/diagnosis , Alzheimer Disease/physiopathology , Alzheimer Disease/therapy , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Brain/physiopathology , Brain Injuries/diagnosis , Brain Injuries/therapy , COVID-19/diagnosis , COVID-19/physiopathology , COVID-19/therapy , Disease Progression , Etanercept/therapeutic use , Heart Arrest/diagnosis , Heart Arrest/physiopathology , Heart Arrest/therapy , Humans , Locus Coeruleus/physiopathology , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/therapy , Norepinephrine/physiology , Parkinson Disease/diagnosis , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Risk Factors , SARS-CoV-2 , Stroke/diagnosis , Stroke/therapy , Survivors , Tumor Necrosis Factor-alpha/antagonists & inhibitors
19.
Neurology ; 96(11): e1527-e1538, 2021 03 16.
Article in English | MEDLINE | ID: covidwho-1028513

ABSTRACT

OBJECTIVE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is protean in its manifestations, affecting nearly every organ system. However, nervous system involvement and its effect on disease outcome are poorly characterized. The objective of this study was to determine whether neurologic syndromes are associated with increased risk of inpatient mortality. METHODS: A total of 581 hospitalized patients with confirmed SARS-CoV-2 infection, neurologic involvement, and brain imaging were compared to hospitalized non-neurologic patients with coronavirus disease 2019 (COVID-19). Four patterns of neurologic manifestations were identified: acute stroke, new or recrudescent seizures, altered mentation with normal imaging, and neuro-COVID-19 complex. Factors present on admission were analyzed as potential predictors of in-hospital mortality, including sociodemographic variables, preexisting comorbidities, vital signs, laboratory values, and pattern of neurologic manifestations. Significant predictors were incorporated into a disease severity score. Patients with neurologic manifestations were matched with patients of the same age and disease severity to assess the risk of death. RESULTS: A total of 4,711 patients with confirmed SARS-CoV-2 infection were admitted to one medical system in New York City during a 6-week period. Of these, 581 (12%) had neurologic issues of sufficient concern to warrant neuroimaging. These patients were compared to 1,743 non-neurologic patients with COVID-19 matched for age and disease severity admitted during the same period. Patients with altered mentation (n = 258, p = 0.04, odds ratio [OR] 1.39, confidence interval [CI] 1.04-1.86) or radiologically confirmed stroke (n = 55, p = 0.001, OR 3.1, CI 1.65-5.92) had a higher risk of mortality than age- and severity-matched controls. CONCLUSIONS: The incidence of altered mentation or stroke on admission predicts a modest but significantly higher risk of in-hospital mortality independent of disease severity. While other biomarker factors also predict mortality, measures to identify and treat such patients may be important in reducing overall mortality of COVID-19.


Subject(s)
COVID-19/mortality , Confusion/physiopathology , Consciousness Disorders/physiopathology , Hospital Mortality , Stroke/physiopathology , Aged , Aged, 80 and over , Ageusia/epidemiology , Ageusia/physiopathology , Anosmia/epidemiology , Anosmia/physiopathology , Ataxia/epidemiology , Ataxia/physiopathology , COVID-19/physiopathology , Confusion/epidemiology , Consciousness Disorders/epidemiology , Cranial Nerve Diseases/epidemiology , Cranial Nerve Diseases/physiopathology , Delirium/epidemiology , Delirium/physiopathology , Female , Headache/epidemiology , Headache/physiopathology , Humans , Male , Middle Aged , Paresthesia/epidemiology , Paresthesia/physiopathology , Primary Dysautonomias/epidemiology , Primary Dysautonomias/physiopathology , Recurrence , SARS-CoV-2 , Seizures/epidemiology , Seizures/physiopathology , Stroke/epidemiology , Vertigo/epidemiology , Vertigo/physiopathology
20.
Rev Neurosci ; 32(3): 341-349, 2021 04 27.
Article in English | MEDLINE | ID: covidwho-1021723

ABSTRACT

Coronavirus disease 2019 (COVID-19), due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in Wuhan city, China in December 2019 and rapidly spread to other countries. The most common reported symptoms are fever, dry cough, myalgia and fatigue, headache, anorexia, and breathlessness. Anosmia and dysgeusia as well as gastrointestinal symptoms including nausea and diarrhea are other notable symptoms. This virus also can exhibit neurotropic properties and may also cause neurological diseases, including epileptic seizures, cerebrovascular accident, Guillian barre syndrome, acute transverse myelitis, and acute encephalitis. In this study, we discuss stroke as a complication of the new coronavirus and its possible mechanisms of damage.


Subject(s)
COVID-19/physiopathology , Endothelium, Vascular/physiopathology , Hypoxia/physiopathology , Stroke/physiopathology , Thrombophilia/physiopathology , Angiotensin-Converting Enzyme 2/metabolism , Blood Viscosity , COVID-19/blood , COVID-19/complications , COVID-19/metabolism , Humans , Hypoxia/complications , Myocarditis/complications , Myocarditis/physiopathology , Renin-Angiotensin System , Risk , SARS-CoV-2/metabolism , Stroke/blood , Stroke/etiology , Stroke/metabolism , Thrombophilia/blood , Thrombophilia/etiology
SELECTION OF CITATIONS
SEARCH DETAIL